Chapter 8. Sorting

8.0 Introduction

8-008-T [[ed 10 LUO:)'JU'N\MM//Zd],lq

This chapter almost doesn’t belong in a booknomerical methods. However,
some practical knowledge of techniques for sorting is an indispensable part of any®
good programmer’s expertise. We would not want you to consider yourself expert in &
numerical techniques while remaining ignorant of so basic a subject.

In conjunction with numerical work, sorting is frequently necessary when data
(either experimental or numerically generated) are being handled. One has table¥

@

or lists of numbers, representing one or more independent (or “control”) variables, 2.
and one or more dependent (or “measured”) variables. One may wish to arrang§
these data, in various circumstances, in order by one or another of these variables
Alternatively, one may simply wish to identify the “median” value, or the “upper
quartile” value of one of the lists of values. This task, closely related to sorting,
is called selection.

Here, more specifically, are the tasks that this chapter will deal with:

e Sort, i.e., rearrange, an array of numbers into numerical order.

e Rearrange an array into numerical order while performing the corre-
sponding rearrangement of one or more additional arrays, so that the
correspondence between elements in all arrays is maintained.

e Given an array, prepare amdex tablefor it, i.e., a table of pointers telling
which number array element comes first in numerical order, which second,
and so on.

e Given an array, prepare rank table for it, i.e., a table telling what is
the numerical rank of the first array element, the second array element,
and so on.

e Select theMth largest element from an array.

YUON) €22

For the basic task of sortiny elements, the best algorithms require on the
order of several time&/ log, N operations. The algorithm inventor tries to reduce
the constant in front of this estimate to as small a value as possible. Two of th
best algorithms ar@uicksort (§8.2), invented by the inimitable C.A.R. Hoare, and
Heapsort (§8.3), invented by J.W.J. Williams.

For largeN (say> 1000), Quicksort is faster, on most machines, by a factor of
1.5 or 2; it requires a bit of extra memory, however, and is a moderately complicated
program. Heapsort is a true “sort in place,” and is somewhat more compact to
program and therefore a bit easier to modify for special purposes. On balance, we
recommend Quicksort because of its speed, but we implement both routines.

(@ouawv YuoN apisino) Bio'abpugqued@AIasisnoloalip 0] |lewa puss Jo
81ISgaM NISIA ‘SINOHAD 10 sq00q sadioay [ealswn 1apio 0] ‘pangiyold Apows si ‘1eindwod 1aaias Aue o} (suo siyy Buipnjoul) saji a|jqepeal

320

-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul 10} pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dID3Y TvOI4INNN woly obed sjdwes

10

8.1 Straight Insertion and Shell's Method 321

For smallN one does better to use an algorithm whose operation count goes
as a higher, i.e., poorer, power f, if the constant in front is small enough. For
N < 20, roughly, the method adtraight insertion (§8.1) is concise and fast enough.
We include it with some trepidation: It is a2 algorithm, whose potential for
misuse (by using it for too large aN) is great. The resultant waste of computer
time is so awesome, that we were tempted not to includeMafyoutine at all. We
will draw the line, however, at the inefficieM? algorithm, beloved of elementary
computer science texts, calledbble sort. If you know what bubble sort is, wipe it
from your mind; if you don’t know, make a point of never finding out!

For N < 50, roughly,Shell’s method (§8.1), only slightly more complicated to
program than straight insertion, is competitive with the more complicated Quicksort
on many machines. This method goes\&¥ 2 in the worst case, but is usually faster.

See referencds,2] for further information on the subject of sorting, and for
detailed references to the literature.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley). [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapters 8-13. [2]

8.1 Straight Insertion and Shell’'s Method

Straight insertion is an N2 routine, and should be used only for small,
say < 20.

The technique is exactly the one used by experienced card players to sort the
cards: Pick out the second card and put it in order with respect to the first; then pic
out the third card and insert it into the sequence among the first two; and so on unt
the last card has been picked out and inserted.

0] [fewa puas 1o ‘(AJuo eousWY YUON) £24/-2/8-008-T |[ed 10 W09 Ju Mmmm//:dny

SDom

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘(eauawy YUoN apisino) Bio abpugqwed@AiasTsh

SUBROUTINE piksrt(n,arr)

INTEGER n

REAL arr(n)
Sorts an array arr(1:n) into ascending numerical order, by straight insertion. n is input;
arr is replaced on output by its sorted rearrangement.

INTEGER 1i,j

REAL a

do12 j=2,n Pick out each element in turn.
a=arr(j)
dou i=j-1,1,-1 Look for the place to insert it.

if (arr(i).le.a)goto 10
arr(i+1)=arr(i)
enddo 11
i=0
arr(i+l)=a Insert it.
enddo 12
return
END

What if you also want to rearrange an ariayr at the same time as you sort
arr? Simply move an element df-r whenever you move an elementaxr:

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

